11 research outputs found

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    Analysis of rotor vibratory loads using higher harmonic pitch control

    Get PDF
    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code

    Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    Get PDF
    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight

    Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    Get PDF
    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions

    Aerodynamic rotor blade optimization at Eurocopter - a new way of industrial rotor blade design

    No full text
    none4Industrial aerodynamic design optimization of helicopter rotor blades requires employ-ment of multi-objective optimization methods to account for the two distinct objectives in hover and forward flight. Genetic algorithms are preferred for finding the Pareto Optimal Front, as they allow the engineer to select out of optimal designs. An optimization loop is created, coupling the Dakota optimization library and two simulation methods for objective function evaluation: comprehensive rotor code HOST and CFD solver elsA. For low-cost rotor simulations by HOST, a genetic algorithm is employed to maximize hover and forward flight rotor performance in single-and two-point optimizations. Twist and chord laws of the 7A blade are optimized separately and simultaneously. As genetic algorithms require too many cost function evaluations for CFD-based optimizations, Surrogate Based Optimiza-tion (SBO) is employed. SBO is initialized by a preliminary Design of Experiment (DoE). The results are used to generate a metamodel for estimation of cost function evaluations in the optimization algorithm. The metamodel is updated using information from subsequent simulations. Validation of HOST-based SBO against full genetic algorithm optimizations shows that the Pareto Optimal Front is correctly represented by SBO, while requiring 88% less cost function simulations. Several sizes of initial DoE, number of update cycles and number of simulations added per cycle are tested. Then, a similar SBO optimization is carried out by replacing the HOST code by CFD for hover performance simulation. The results demonstrate the ability of both solvers and both optimization techniques to perform aerodynamic design optimization of helicopter rotor blades.mixedD. Leusink; D. Alfano; P. Cinnella; J.-Ch. RobinetD., Leusink; D., Alfano; Cinnella, Paola; Robinet, J. C. h
    corecore